skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turnquist, Axel_G_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a partial differential equation (PDE) approach to numerically solve the reflector antenna problem by solving an optimal transport problem on the unit sphere with cost function c ( x , y ) = −<#comment/> 2 log ⁡<#comment/> | | x −<#comment/> y | | . At each point on the sphere, we replace the surface PDE with a generalized Monge–Ampère type equation posed on the local tangent plane. We then use a provably convergent finite difference scheme to approximate the solution and construct the reflector. The method is easily adapted to take into account highly nonsmooth data and solutions, which makes it particularly well adapted to real-world optics problems. Computational examples demonstrate the success of this method in computing reflectors for a range of challenging problems including discontinuous intensities and intensities supported on complicated geometries. 
    more » « less